
Part 2: Case Study Labs

1

X X X Part 2: Case Study Labs

Application Overview

The purpose of the dyeing system is to dye fabric with a specified color. This process
is accomplished by filling a tank with liquid dye, placing the fabric in the tank, and
letting the fabric soak for a preset time, letting the dye penetrate the fabric and change
its color.

Dyeing System

The diagram below shows a high-level view of a dyeing system. It is composed of a
tank, within which the dyeing takes place, and a controller, which is responsible for
sequencing the tank through the dyeing process. An operator, external to the system,
sets up the controller and then starts the dyeing process.

Tank

The tank holds the fabric to be dyed and the dye solution. The fill valve allows solu-
tion to enter the tank, and the drain valve permits its removal. The current level in the
tank is reported continuously via the level sensor. The valves are two-state devices
(on or off), where the level sensor is a transformational or continuous device, meaning
that its output continuously varies as a function of its input.

Controller

Tank

fill
drain

level

start

Operator

done

Mastering Rational Rose RealTime — C++

2

The level sensor provides the necessary feedback to correctly and safely control the
dyeing process. This example is a closed-loop system. Conversely, open-loop systems
contain no feedback mechanism and must rely on assumptions about the state of the
system to control processing.

Controller

The controller has two primary responsibilities: first, to act on commands from the
operator; and second, to fill and drain the tank, and monitor the amount of dye that is
in the tank and the amount of time the fabric is exposed to the dye.

 fill valve

drain valve

level sensor

dyeing tank

Part 2: Case Study Labs

3

Dyeing Run Scenario

The operator sets up the controller for a dyeing run by specifying a fabric type and
dye color, and then initiates the process. The controller immediately opens the fill
valve, allowing dye to begin filling the tank. When the controller senses that the tank
is full, it closes the fill valve and starts a timer. A predetermined period of time later,
the timer fires. This event alerts the controller to open the drain valve, which begins
emptying the dye from the tank. When the tank is empty, the controller closes the
drain valve, and the process is complete. At this point, the system is ready to process
more fabric.

controller tankoperator

1: start1: start 2: f ill valve on2: f ill valve on

3: tank full3: tank full

4: f ill valve off4: f ill valve off

5: start timer5: start timer

6: timeout6: timeout

7: drain valve on7: drain valve on

8: tank empty8: tank empty

9: drain valve off9: drain valve off
10: done10: done

Mastering Rational Rose RealTime — C++

4

Another View – Level vs. Time

Viewing a process as a function of time can add valuable information about the func-
tioning of a system. The graph above shows the level of the dye as it varies over time
during the dyeing process. The major states of the dyeing process are also shown.

Basic Structure of the Dyeing System

There are five basic elements in the dyeing system: the controller, fill valve, drain valve,
level sensor, and liquid dye. The last four (the two valves, sensor, and dye) are elements
of the tank. Their interconnection is shown in the diagram above.

Empty Filling Dyeing Draining

Level

Time

 / controller

 / fi llValve

 / drainValve

 / dye

 / levelSensor

+ / operatorDialog

+ / fi l l

+ / drain

+ / level

+ / flow+ / control~

+ / fl ow+ / control~

+ / flowIn~

+ / fl owOut~

+ / level~+ / input+ / output~

 / controller

+ / operatorDialog

+ / fi l l

+ / drain

+ / level

 / fi llValve
+ / flow+ / control~

 / drainValve
+ / fl ow+ / control~

+ / flowIn~

+ / fl owOut~

+ / level~

 / dye

+ / input+ / output~
 / levelSensor

Part 2: Case Study Labs

5

Detailed Dyeing System Scenario

 / drainValve
 : Valve

 / f illValve : Valve / levelSensor
 : Level

 / dye : Dye / controller
 : Controller

offempty TOPidle off
1: value1: value

1: start1: start
2: : on2: : on

f illing
3: : status3: : status

on
2: value2: value

3: : value3: : value

4: off4: off

dyeing off
5: status5: status

6: timeout6: timeout 4: value4: value

5: value5: value

7: timeout7: timeout
8: on8: on

draining
9: status9: status

6: value6: value

7: value7: value
8: off8: off

empty
9: status9: status

10: done10: done

Mastering Rational Rose RealTime — C++

6

Lab 1: Controller/Tester

7

X X X Lab 1: Controller/Tester

This lab accompanies Module 4, “Capsule Structure: Ports, Protocols, and Capsule
Roles.”

In this lab, you will create a simplified version of DyeingSystem by using the existing
capsule classes, Controller and Tester. You will create capsules with simple structure
and no behavior.

Objectives

When you have successfully completed this lab, you will be able to:

X Use the basic tool features
X Build a simple model from existing elements
X Compile, run, test, and debug the model
X Generate a sequence diagram from the running model
X Create a class diagram of the model

Instructions

1. Open the model C:\MRRT\CaseStudy\DyeingSystem.rtmdl.

1.1. Open the model using Open on the File menu.
2. Save the model

2.1. Use Save Model on the File menu to save the model in your StudentWork
directory.

2.2. When the workspace dialog appears, click to create a
workspace.

3. Create a new capsule class named DyeingSystem.

3.1. Right-click the Logical View folder and select New > Capsule.

3.2. Type the name of the capsule followed by � (Enter) .

Continued on next page.

Mastering Rational Rose RealTime — C++

8

4. In the DyeingSystem structure diagram, create the model shown below. Insert one
Controller and one Tester capsule, and connect them as shown.

4.1. Right-click DyeingSystem in the Logical View folder and select Open
Structure Diagram.

4.2. Drag the Controller and Tester capsules onto the diagram.
4.3. Using the Connector tool, click the fill port on the controller capsule role,

and then drag a line to the fill port on the tester capsule role.
4.4. Repeat the previous instruction for the drain and level ports.

5. Build and run the model and correct any errors.

5.1. Create a new component named DyeingSystem.
5.2. Drag the top capsule onto the component.
5.3. Set the component to active.
5.4. Set the Top Capsule and Target Configuration.
5.5. Create a new processor named DyeingSystem.
5.6. Draw a dependency between the DyeingSystem component and

RTComponent.
5.6.1. Double-click the Main component diagram to open it.
5.6.2. Drag the DyeingSystem component and the RTComponent from the

RTComponents package onto the diagram.
5.6.3. Use the Dependency tool to draw a dependency relationship from

DyeingSystem to RTComponent.
5.7. Create a component instance.
5.8. Set the component instance to active.
5.9. Build and run the component instance.

 / controller / tester

+ / operatorDialog + / f ill

+ / drain

+ / level

+ / f ill~

+ / drain~

+ / level~

 / controller

+ / operatorDialog + / f ill

+ / drain

+ / level

 / tester

+ / f ill~

+ / drain~

+ / level~

Lab 1: Controller/Tester

9

6. Create a run-time sequence diagram.

6.1. Open the DyeingSystem structure monitor window.
6.1.1. Right-click the DyeingSystem folder, and select Open Structure

Monitor.
6.2. Place a probe on the operatorDialog port.

6.2.1. Using the Probe tool , click the operatorDialog port in the struc-
ture monitor. (See Rose RealTime Help topic, “Creating a port
probe.”)

6.3. Open an inject window on the probe and create a start message within it.
6.3.1. Expand the Probes folder and double-click the probe to open its

specification dialog box.
6.3.2. On the Detail tab, right-click the entry field, and select Insert.
6.3.3. Use the Edit Inject Message specification to select the signal to be

injected.
6.4. Open a trace window on controller and tester.

6.4.1. Open the Structure Monitor for DyeingSystem.
6.4.2. Click on controller, then control-click on tester.
6.4.3. Right-click on an empty spot on the diagram and select Open

Trace.
6.4.4. Set the configuration threshold to 250 by right-clicking the Trace

window and selecting Configure. Change the number in the

Buffer Size box to 250 and click .
6.5. Open the controller state monitor (maximize).

6.5.1. Right-click the controller and select Open State Monitor.
6.6. Start the model and inject the start message.

6.6.1. Click Start to run the model.
6.6.2. Double-click operatorDialog/start in the probe folder.

6.7. When the controller cycles back to the empty state, open a sequence diagram
from the trace window.
6.7.1. Right-click in the trace window and select Open Sequence Dia-

gram.
6.7.2. You can choose whether to save the diagram, and then click

.

7. Click the Shutdown button to halt the execution of the model.

Mastering Rational Rose RealTime — C++

10

8. Compare the generated sequence diagram with the one shown below.

 / tester : Tester / controller
 : Controller

1 : : init iali ze1 : : init iali ze
2: : initialize2: : initialize

emp ty empty

2: : turnOn2: : turnOn

fil l ing
3: : isOn3: : isOn

4: : informIn4: : informIn

fil l ing

5: : timeout5: : timeout
6: : value6: : value

7: : turnOff7: : turnOff
8: : informIn8: : informIn

dyeing
8: : isOff8: : isOff

9: : timeout9: : timeout
dyei ng

10: : turnOn10: : turnOn

draining
11: : isOn11: : isOn

12: : info rm In12: : info rm In

draining
13: : timeout13: : timeout

14: : value14: : value

15: : turnOff15: : turnOff

emp ty
16: : isOff16: : isOff

empty

Lab 2: Valve, Start Low-Temp System

11

X X X Lab 2: Valve, Start Low-Temp System

This lab accompanies Module 5, “State Modeling.”

This exercise involves creating capsules with simple structure and behavior. You will
build the Flow protocol and Valve capsule class, and then compile and debug the
model by removing any compile and run-time errors. Then you will add Valve cap-
sule roles to the DyeingSystem.

Objectives

When you have successfully completed this lab, you will be able to:

X Create a capsule with simple structure and simple behavior
X Begin construction of a complex model (the case study)
X Create a simple protocol class

Instructions

1. Remove tester from the DyeingSystem structure diagram. It is no longer needed.

2. Create the Flow protocol class with an out-signal called amount as shown below.

Flow
<<Protocol>>

amount (int)

Mastering Rational Rose RealTime — C++

12

3. Create a capsule class named Valve and define its structure and behavior.

3.1. Create the capsule and an integer attribute called flowAmount. Set the initial
value of flowAmount to 2.

3.2. Define Valve structure with two ports as shown below:

3.3. Define Valve behavior as shown below. The notes show the code to add to
the transitions. Both transition triggers are on the control port.

4. Save the model.

Valv e

f lowAmount : int = 2

+ / control : Dev iceControl~
+ / f low : Flow

<<Capsule>>

+ / f low+ / control~ + / f low+ / control~

off on

Ini tial

turnOf f

turnOn

Ini tial

turnOf f

control.isOn().send();
flow.amount(flowAmount).send();

control.isOff().send();

turnOn

Lab 2: Valve, Start Low-Temp System

13

5. Test the Valve class.

5.1. Compile the Valve class. Correct any compilation errors.
5.2. Run the model.
5.3. Add probes to the control and flow ports, and then open trace windows on

them.
5.4. Open an inject window on the control port. Create two messages, turnOn

and turnOff.
5.5. Open a state monitor window on Valve.
5.6. Start the model and verify that it is running properly by injecting messages

and monitoring the trace windows.
5.7. Generate a sequence diagram from the running Valve and compare it with

the one in the previous lab.
6. Add capsule roles to the DyeingSystem class.

6.1. Add two Valve references to the DyeingSystem structure. Name them
fillValve and drainValve.

6.2. Connect them to the appropriate ports on the controller.

6.3. Compile the DyeingSystem and remove any compilation errors.
6.4. The entire DyeingSystem will be completed and tested in the next exercise.

 / controller

 / fillValve

 / drainValve
+ / operatorDialog

+ / fill

+ / drain

+ / level

+ / flow + / control~

+ / flow + / control~

 / controller

+ / operatorDialog
+ / fill

+ / drain

+ / level

 / fillValve
+ / flow + / control~

 / drainValve
+ / flow + / control~

Mastering Rational Rose RealTime — C++

14

Lab 3: Complete Low-Temp System

15

X X X Lab 3: Complete Low-Temp System

This lab accompanies Module 6, “System Services.”

To complete the low-temp dyeing system, you will integrate a timer into the design of
the Valve capsule class to periodically send Flow::amount messages. You will also cre-
ate the AcquiredValue protocol class and Level and Dye capsule classes. Finally, you
will add Level and Dye capsule roles to the DyeingSystem, and then compile and test
the DyeingSystem as a complete system.

Objectives

When this exercise is successfully completed, you will be able to:

X Complete construction of a complex model
X Make use of timers in a model with the Timing service in the services library

Instructions

1. Modify the Valve capsule class to periodically send Flow::amount messages out
its flow port. Implement this modification using a timer.

1.1. Modify the Valve structure by adding an unwired end port based on
Timing.

+ / f low+ / control~

/ timer

+ / f low+ / control~

/ timer

Valve

flowAmount : int = 2
flowRate : RTTimespec = 1, 0
timerId : RTTimerId = 0

+ / control : DeviceControl~
+ / flow : Flow
/ timer : Timing

<<Capsule>>

Mastering Rational Rose RealTime — C++

16

1.2. Modify the Valve behavior.

2. Create the AcquiredValue protocol class.

3. Create the Level capsule class.

3.1. Define the Level structure.

off on

Initial

turnOn

timeout

turnOff

Initial

turnOn

timeout

turnOff

control.isOn().send();
flow.amount(flowAmount).send();
timerId = timer.informEvery (flowRate);

flow.amount (flowAmount).send();

control.isOff().send();
timer.cancelTimer (timerId);

AcquiredValue

value (int)

request (void)

<<Pro toco l>>

Le vel

sampleTime : RTTimespec = 1, 0

+ / output : MonitoredValue~
+ / input : AcquiredValue
/ timer : Timing

<<Cap sul e>>

+ / input
 : AcquiredValue

+ / output
 : MonitoredValue~

/ timer
 : Timing

+ / input
 : AcquiredValue

+ / output
 : MonitoredValue~

/ timer
 : Timing

Lab 3: Complete Low-Temp System

17

3.2. Define the Level behavior as shown before. Notice that there is entry code
for the Idle state. The trigger for report is on the input port, the trigger for
sample is on the timeout port.

4. Create the Dye capsule class.

4.1. Define the Dye structure.

idl e

acquiring

samplereport

Initial

samplereport

Initial

timer.informIn (sampleTime);

input.request().send();

output.value(*rtdata).send();

 / levelSensor
 : Level

1: : initialize1: : initialize
2: : informIn2: : informIn

idle

3: : timeout3: : timeout
4: : request4: : request

acquring
5: : value5: : value

6: : value6: : value
7: : informIn7: : informIn

idle

Dye

currentLevel : int = 0

+ / flowIn : Flow~
+ / flowOut : Flow~
+ / level : AcquiredValue~

<<Capsule>>
+ / fl owIn
 : Flow~

+ / fl owOut
 : Flow~

+ / level
 : Acqui redValue~

+ / fl owIn
 : Flow~

+ / fl owOut
 : Flow~

+ / level
 : Acqui redValue~

Mastering Rational Rose RealTime — C++

18

4.2. Define the Dye behavior. Triggers are on the port with the same name as
the transition.

5. Add one Level and one Dye role to the DyeingSystem. Name them levelSensor and
dye, respectively. Connect the appropriate ports to complete the definition of the
DyeingSystem as shown below.

6. Compile the DyeingSystem. Remove any compilation errors.

7. System test the DyeingSystem by using the “30-Second Test” (instructions below).

8. Generate a sequence diagram from the running model and compare it to the one
shown in “Dyeing Run Scenario” on page 3.

 / dye : D ye

1: : init ialize 1: : init ialize

active

2: : request 2: : request
3: : value 3: : value

4: am ount 4: am ount
5: am ount 5: am ount
6: am ount 6: am ount

 / controller

 / fi llValve

 / drainValve

 / dye

 / levelSensor

+ / operatorDialog

+ / fi l l

+ / drain

+ / level

+ / flow+ / control~

+ / fl ow+ / control~

+ / flowIn~

+ / fl owOut~

+ / level~+ / input+ / output~

 / controller

+ / operatorDialog

+ / fi l l

+ / drain

+ / level

 / fi llValve
+ / flow+ / control~

 / drainValve
+ / fl ow+ / control~

+ / flowIn~

+ / fl owOut~

+ / level~

 / dye

+ / input+ / output~
 / levelSensor

Lab 3: Complete Low-Temp System

19

The 30-Second Test

1. Load the model into the Runtime View (do not run it yet).

2. Open the structure monitor for the DyeingSystem.

2.1. Place a probe on controller’s operatorDialog port.
2.2. Place a probe on controller’s level port.
2.3. Close the DyeingSystem’s structure monitor.

3. Expand the Probes folder.

3.1. Open an inject window on the operatorDialog probe.
3.2. Create a start message.
3.3. Close the inject window.
3.4. Open a trace window on the level probe.
3.5. Maximize the window size, if it is not maximized.

4. Run the model by clicking Start . If your model is working properly, you
should see value messages being received from the levelSensor, indicating a “0”
solution level for the dye.

5. Expand the operatorDialog probe folder so that you can see the individual signals.

6. Start the dyeing process by injecting the start message (double-click it).

7. The level should rise from 0 to a maximum of 10 (5 seconds), remain constant at
10 (20 seconds), and then drain back to 0 (5 seconds)—hence, the 30-second test!
This is the fastest and simplest way to test this model. Using it throughout the
case study will reduce your test and debug times. Don’t forget to set the trace
threshold to 250. See Lab 1, step 6.4 for instructions.

Mastering Rational Rose RealTime — C++

20

Lab 4: Master and Tank Containers

21

X X X Lab 4: Master and Tank Containers

This lab accompanies Module 9, “Structure Hierarchies.”

This is a two-part lab in which you will reorganize the dyeing system model to make
it easier to work with. In the first part, you will use the Rose RealTime aggregation fea-
ture to create container capsule classes Tank and Master. Remember that the aggrega-
tion feature is a tool that allows you to combine capsules. It is not the same as the
UML aggregation relationship.

In the second part of the lab, you will use replication to create multiple tanks and con-
trollers.

Objectives

When you have successfully completed this lab, you will be able to:

X Create structure hierarchies (capsules containing other capsules) in an existing
model

X Apply the technique of aggregation
X Apply replication (cardinality) to capsules and ports
X Compile, run, and debug a structurally complex model

Instructions: Part 1 — Aggregation (of Structure)

Here is the DyeingSystem capsule structure as it is now.

DyeingSystem

Mastering Rational Rose RealTime — C++

22

1. Open the DyeingSystem model if it’s not already open.

2. Aggregate fillValve, drainValve, dye, and levelSensor into a new capsule class. The
new DyeingSystem capsule structure looks like the illustration above.

2.1. Open the DyeingSystem structure diagram and select the valves, sensor and
dye capsule roles. (You can either click and drag or Shift+click.)

2.2. Right-click the empty part of the diagram and select Parts > Aggregate. (If
you click the selected capsule roles you will get the wrong menu.) The
result should look similar to the diagram above.

2.3. Right click the NewCapsule1 in the browser and select Rename to change
the name to Tank.

 / tank / master

+ / fi ll~

+ / drain~

+ / level~

+ / fil l

+ / drain

+ / level

+ / operatorDialog

 / tank

+ / fi ll~

+ / drain~

+ / level~

 / master

+ / fil l

+ / drain

+ / level

+ / operatorDialog

Lab 4: Master and Tank Containers

23

2.4. Double-click the title of the new capsule role and name it tank. If you
double-click the new tank capsule role you will see its structure, which
looks like the following diagram.

3. Aggregate the controller into a new capsule class.

3.1. Follow the directions in step 1 and name the new capsule class Master.
3.2. Name the new capsule role master.

4. Add a relay port named operatorDialog to Master based on the protocol class
OperatorDialog. Connect it to operatorDialog on controller.

5. Save the model.

 / fi l lValve
 : Valve

 / drainValve
 : Valve

 / levelSensor
 : Level

 / dye : Dye

+ / fi l l~

+ / drain~

+ / level~

+ / flow+ / control~

+ / flow+ / control~

+ / input+ / output~

+ / flowIn~

+ / flowOut~

+ / level~

+ / fi l l~

+ / drain~

+ / level~

 / fi l lValve
 : Valve + / flow+ / control~

 / drainValve
 : Valve + / flow+ / control~

 / levelSensor
 : Level + / input+ / output~

 / dye : Dye

+ / flowIn~

+ / flowOut~

+ / level~

 / controller
 : Control ler

+ / fi l l
 : DeviceControl

+ / drain
 : DeviceControl

+ / level
 : MonitoredValue

+ / operatorDialog
 : OperatorDialog

+ / operatorDialog
 : OperatorDialog

+ / fi l l
 : DeviceControl

+ / drain
 : DeviceControl

+ / level
 : MonitoredValue

+ / fi l l
 : DeviceControl

+ / drain
 : DeviceControl

+ / level
 : MonitoredValue

+ / operatorDialog
 : OperatorDialog

 / controller
 : Control ler

+ / operatorDialog
 : OperatorDialog

+ / fi l l
 : DeviceControl

+ / drain
 : DeviceControl

+ / level
 : MonitoredValue

Mastering Rational Rose RealTime — C++

24

6. Perform the “30-Second Test” on DyeingSystem to ensure that it still functions
properly. To perform the 30-Second Test for this lab, the model must be running
in order to add the probe to the fill port. Also, place the probe to start the system
on the operatorDialog port on master instead of on controllerR1.

PART 2 – Replication

1. Create a global constant named Constant::MAXUNITS.

1.1. Create the passive class Constant.
1.1.1. Right-click the Logical View folder and select New > Class.

1.2. Add an attribute named MAXUNITS based on int.
1.2.1. Open the Class Specification dialog box to the General tab. Set

Visibility to Public and Type to Class.
1.2.2. Click the Attribute tab. Right-click in the entry area and select

Insert. Name the attribute MAXUNITS.
1.2.3. Double-click the name of the attribute to open the Class Attribute

Specification dialog box. On the Detail tab, set Type to int, Initial
value to 1, and Changeability to Frozen.

1.2.4. On the C++ Tab, set AttributeKind to global.

1.2.5. Click on both dialogs.
2. Replicate the specified capsule roles within DyeingSystem, using a cardinality of

Constant::MAXUNITS.

2.1. Add a conjugated, wired, protected end port based on operatorDialog to
DyeingSystem’s structure and connect it to the matching port on the master
capsule role. Set the cardinality to Constant::MAXUNITS.

2.2. Set the tank capsule role within DyeingSystem to a cardinality of
Constant::MAXUNITS.

 / tank / master

+ / fi ll~

+ / drain~

+ / level~

+ / fi l l

+ / drain

+ / level

+ / operatorDialog

 / tank

+ / fi ll~

+ / drain~

+ / level~

 / master

+ / fi l l

+ / drain

+ / level

+ / operatorDialog

Lab 4: Master and Tank Containers

25

2.3. Set the controller capsule role within master to a cardinality of
Constant::MAXUNITS.

2.4. Set the relay ports on master to a cardinality of Constant::MAXUNITS.

3. Save the model.

4. Perform the “30-Second Test” on DyeingSystem.

5. Change Constant::MAXUNITS to 3.

6. Save the model.

Mastering Rational Rose RealTime — C++

26

7. Perform the “30-Second Test” on DyeingSystem. Be sure to monitor all 3 controller/
tank pairs for proper operation.

7.1. Put a probe on the level port of each controller.

7.1.1. Click Start .
7.1.2. Expand the 0/master:Master folder.
7.1.3. For each of the controllers, open a Structure Monitor and put a

probe on the level port.
7.2. Open a trace window on each probe.
7.3. To simplify starting all three controllers, place a single probe on the

conjugated operatorDialog port connected to master, and then create a single
start message. To do this, open the Edit Inject Signal Specification as before,
and change the Direction selection to Out. Select the Start signal and
continue as usual.s

7.4. Click Start .
7.5. Inject a single start message through the operatorDialog probe. This action

has the advantage of broadcasting start to each of the (replicated)
operatorDialog ports.

Lab 5: Start High-Temperature System

27

X X X Lab 5: Start High-Temperature System

This lab accompanies Module 10, “Inheritance Hierarchies.”

In this lab you will learn to manage model complexity by using inheritance hierar-
chies. You will create a high-temperature dyeing system by superclassing and sub-
classing existing capsule, protocol, and passive classes in DyeingSystem.

Objectives

When you have successfully completed this lab, you will be able to:

X Create an entirely new system by constructing inheritance hierarchies
X Apply bottom-up design to an inheritance hierarchy (generalizing an existing

class)
X Apply top-down design to an inheritance hierarchy (specializing an existing class)
X Compile, run, and debug a model containing inheritance hierarchies

Instructions

PART 1 – Create Inheritance Hierarchies

Device
flowAmount : int = 2
flowRate : RTTimespec = 1, 0
timerId : RTTimerId = 0

+ / flow : Flow
/ timer : Timing
+ / control : DeviceControl~

<<Capsule>>

Valve
<<Capsule>>

Heater
<<Capsule>>

Se nsor

sampleTime : RTTimespec = 1, 0

+ / input : AcquiredValue
/ timer : Timing
+ / output : MonitoredValue~

<<Capsule >>

Level
<<Capsule>>

Thermometer
<<Capsule>>

Generalization Specializatio

Mastering Rational Rose RealTime — C++

28

1. Start with the interation of DyeingSystem you completed in the last exercise.

2. Change Constant::MAXUNITS to 1. This will simplify testing this phase of the
design.

3. Make Valve a subclass of a new capsule called Device.

3.1. Create a new capsule class named Device.
3.2. In the Logical View, create a class diagram named Inheritance.
3.3. Drag both the Device and Valve capsules onto the class diagram.

3.4. Using the Generalization tool , draw a line from Valve to Device. You

will see the Inheritance Rearrangement dialog box. Click .
3.5. Promote all the structure elements of Valve up into Device.

3.5.1. Open the structure diagram for Valve.

3.5.2. Select any ports, capsule roles, and connectors.
3.5.3. Right-click the diagram background and select Parts > Promote.

3.6. Promote all the behavior elements of Valve up into Device.
3.6.1. Open the State diagram for Valve.
3.6.2. Select all states, right-click the diagram background, and select

Parts > Promote.
3.6.3. Select all transitions and choice points, right-click the diagram

background, and select Parts > Promote. (States have to be pro-
moted first so that the transitions have definition.)

3.7. Promote attributes and operations
3.7.1. Open the Capsule Specification dialog box for Valve and click the

Attribute tab.
3.7.2. For each attribute, right-click the attribute name and select Pro-

mote. (If there were operations, you would go to the Operation
tab and promote each operation in the same way.)

3.7.3. Open the Specification window for Device. Set the visibility of all
attributes to Protected (allows them to be inherited).

4. Create a new capsule class, Heater, as a subclass of Device (Class Diagram). This
step is done in the same way as steps 3.1 through 3.4.

4.1. In Heater’s initial transition, set flowAmount to 3.
5. Make Level a subclass of a new capsule class named Sensor. Follow all instructions

as in step 3.

6. Create a new capsule class named Thermometer as a subclass of Sensor.

6.1. In Sensor’s initial transition, set sampleTime to 0.5 second (0s, 500000000 ns).
7. Build the model and remove any errors.

Lab 5: Start High-Temperature System

29

PART 2 – Use Subclasses

1. Create a subclass of Dye named DyeHT.

1.1. Modify the DyeHT structure and behavior.
.

1.2. Create a new component, DyeingSystemHT, based on the capsule class
DyeHT (the top-level capsule).

1.3. Create a new component instance, DyeingSystemHT, based on the
component DyeingSystemHT.

1.4. Build DyeingSystemHT and remove any compilation errors.

active

Initial

flowIn

flowOut

leveltemperature

heatIn

heatOut

Initial

flowIn

flowOut

leveltemperature

heatIn

heatOut

heatOutTimer.informEvery (heatLossTime);

currentTemperature = currentTemperature + *rtdata;

currentTemperature = currentTemperature - 1;
if (currentTemperature < 15) currentTemperature = 15;

temperature.value(currentTemperature).send();

+ / level
 : AcquiredValue~

+ / flowOut
 : Flow~

+ / flowIn
 : Flo w~

+ / heatIn
 : F low~

+ / temperature
 : AcquiredValue~

/ heatOutTimer
 : T iming

+ / level
 : AcquiredValue~

+ / flowOut
 : Flow~

+ / flowIn
 : Flo w~

+ / heatIn
 : F low~

+ / temperature
 : AcquiredValue~

/ heatOutTimer
 : T iming

DyeHT
currentTemperature : int = 15
heatLossTime : RTTimespec = 1, 0

+ / heatIn : Flow~
+ / temperature : AcquiredValue~
/ heatOutTimer : Timing

<<Capsule>>

Mastering Rational Rose RealTime — C++

30

2. Create a subclass of Tank named TankHT.

2.1. In TankHT, override the dye capsule role’s class by changing it from Dye to
DyeHT.
2.1.1. Open the structure diagram for TankHT.
2.1.2. Right-click the dye capsule role and select Open Specification.
2.1.3. On the General tab, change the Class selection in the drop-down

box to DyeHT.
2.2. Add a Heater capsule role named heater.
2.3. Add a Thermometer capsule role named thermometer.
2.4. Create relay ports on TankHT to pass heater control commands to the

heater and temperature readings from the thermometer to the outside
world.

2.5. Connect heater and thermometer to the appropriate ports on dye and to the
relay ports on TankHT.

3. Save the model.

4. Unit test TankHT to ensure that it functions properly.

4.1. Build and test TankHT.
4.1.1. Add probes.
4.1.2. Turn the heater on at its control port, and watch the temperature rise

on thermometer’s input.

 / fi llValve : Valve

 / drainValve
 : Va lve

 / dye : DyeHT

 / levelSensor
 : Level

 / heater : Heater

 / thermometer
 : Thermometer

+ / level~

+ / drain~

+ / fi l l~

+ / heat~

+ / temperature~

+ / control~ + / flow

+ / control~ + / flow

+ / flowIn~

+ / flowOut~

+ / level~

+ / heatIn~

+ / temperature~

+ / output~ + / input

+ / flow+ / control~

+ / inpu t+ / output~

+ / level~

+ / drain~

+ / fi l l~

+ / heat~

+ / temperature~

 / fi llValve : Valve
+ / control~ + / flow

 / drainValve
 : Va lve

+ / control~ + / flow

 / dye : DyeHT

+ / flowIn~

+ / flowOut~

+ / level~

+ / heatIn~

+ / temperature~

 / levelSensor
 : Level+ / output~ + / input

 / heater : Heater
+ / flow+ / control~

 / thermometer
 : Thermometer + / inpu t+ / output~

Ta nkHT

+ / heat : DeviceControl~
+ / temperature : MonitoredValue~

<<Capsule>>

Lab 5: Start High-Temperature System

31

4.1.3. Turn the heater off and watch the temperature drop to room tem-
perature (15º C).

5. Create a subclass of Controller, named ControllerHT.

5.1. Modify the ControllerHT structure (add heat and temperature end ports).

5.2. Create a subclass of Master named MasterHT.
5.3. Modify the MasterHT structure (override controller capsule role with

controllerHT, add relay ports).

+ / level
 : MonitoredValue

+ / drain
 : DeviceControl

+ / fi l l
 : DeviceControl

+ / operatorDialog
 : OperatorDialog

+ / heat
 : DeviceControl

+ / temperature
 : MonitoredV alue

/ timer
 : T iming

+ / level
 : MonitoredValue

+ / drain
 : DeviceControl

+ / fi l l
 : DeviceControl

+ / operatorDialog
 : OperatorDialog

+ / heat
 : DeviceControl

+ / temperature
 : MonitoredV alue

/ timer
 : T iming

 / controller
 : ControllerHT

Constant::MaxUnits

+ / operatorDialog
 : OperatorDialog

+ / level
 : MonitoredValue

+ / drain
 : DeviceControl

+ / fil l
 : DeviceControl

+ / heat
 : DeviceControl

+ / temperature
 : MonitoredValue

+ / operatorDialog
 : OperatorDialog

+ / fi ll
 : DeviceControl

+ / drain
 : DeviceControl

+ / level
 : MonitoredValue

+ / heat
 : DeviceControl

+ / temperature
 : MonitoredValue

+ / operatorDialog
 : OperatorDialog

+ / level
 : MonitoredValue

+ / drain
 : DeviceControl

+ / fil l
 : DeviceControl

+ / heat
 : DeviceControl

+ / temperature
 : MonitoredValue

 / controller
 : ControllerHT

+ / operatorDialog
 : OperatorDialog

+ / fi ll
 : DeviceControl

+ / drain
 : DeviceControl

+ / level
 : MonitoredValue

+ / heat
 : DeviceControl

+ / temperature
 : MonitoredValue

Constant::MaxUnits

Mastering Rational Rose RealTime — C++

32

6. Create a subclass of DyeingSystem named DyeingSystemHT.

6.1. Modify the DyeingSystemHT structure.
6.1.1. Override the tank capsule role with tankHT and the master capsule

role with masterHT.

6.2. Connect the high-temperature ports between master and tank.
7. Save the model.

8. Compile the DyeingSystemHT. Remove any compilation errors. Do not test the
model; it will not run—the ControllerHT behavior requires modification in the next
lab before it will function properly.

 / tank : TankHT
Constant::MaxUnits

 / master : MasterHT

+ / fi ll~

+ / drain~

+ / level~

+ / heat~

+ / temperature~

+ / fill

+ / drain

+ / level

+ / ope ratorDialog

+ / heat

+ / temperature

/ operatorDialog~

 / tank : TankHT

+ / fi ll~

+ / drain~

+ / level~

+ / heat~

+ / temperature~

 / master : MasterHT

+ / fill

+ / drain

+ / level

+ / ope ratorDialog

+ / heat

+ / temperature

/ operatorDialog~

Constant::MaxUnits

Lab 6: Complete High-Temperature System

33

X X X Lab 6: Complete High-Temperature System

This lab accompanies Module 11, “Behavior Hierarchies.”

In this lab you will learn to manage behavioral complexity by constructing hierarchi-
cal finite state machines (FSMs). You will modify the behavior of Controller so that it
becomes a hierarchical state machine. Then you will add thermostatic behavior to
ControllerHT so that it can properly regulate the temperature of the liquid dye in the
tank.

Objectives

When you have successfully completed this lab, you will be able to:

X Create a hierarchical FSM in an existing model
X Distribute behavior across a model’s hierarchical FSM
X Compile, run, and debug a model containing a hierarchical FSM

Instructions

PART 1 – Aggregation (of Behavior)

1. Modify the behavior of Controller.

1.1. Aggregate the filling, dyeing, and draining states and choice points into a
state named running.

1.2. Rename the state empty to idle (see below).
2. Save the model.

3. Perform the “30-Second Test” on DyeingSystem to ensure that it still functions
properly.

Mastering Rational Rose RealTime — C++

34

PART 2 – Create Behavior Hierarchy

1. To ControllerHT, add an attribute named dyeingTemperature (int), with an initial
value of 30.

2. Modify ControllerHT’s behavior to maintain the dye at a fixed temperature.

2.1. Add code in dyeing’s entry code to turn on the heater:
2.1.1. Open the state diagram for ControllerHT.
2.1.2. Double-click running to get to the next level in the state hierarchy.
2.1.3. Right-click dyeing to open the State Specification dialog box and go

to the Entry Actions tab.
2.1.4. Type the following code in the Code area:

heat.turnOn().send();
2.2. Select the Exit Actions tab of the State Specification dialog box, and

place the following code in the Code area to turn off the heater:
heat.turnOff().send();

fi ll ing

dyeingdraining

isEmpty

isFull

start

done

timeout

level
False

level

True

False

start

True

timeout

isEmpty

level
False

isFull

level

True

False

startstart

donedone

start

True

idle running

done

startInit ial

done

startInit ial

Lab 6: Complete High-Temperature System

35

3. Create two new states within dyeing named heating and maintaining.

3.1. Draw a transition from dyeing’s True junction to heating.
3.2. Create a choice point named justRight between heating and maintaining.

Connect them with the appropriate transitions.
3.3. Place code in the choice point to test when the temperature is greater-than-

or-equal-to dyeingTemperature.
return (*rtdata >= dyeingTemperature);

4. Create two states within maintaining, named heatOn and heatOff.

4.1. Draw a transition from maintaining’s True junction to heatOn.
4.2. Create two choice points, named tooHot and tooCold, between heatOn and

heatOff. Connect them with the appropriate transitions.

dyeing

heatOn heatOfftooHot

tooCold

True

True

True

False

temperature

False

temperature
True

TrueTrue

tooHot

tooCold

True

True

False

temperature

False

temperature
True

Mastering Rational Rose RealTime — C++

36

4.3. Place code in the choice points tooHot and tooCold to maintain the
temperature within a 2-degree margin above and below dyeingTemperature.
return (*rtdata >= (dyeingTemperature + 2));
return (*rtdata <= (dyeingTemperature – 2));

4.4. Turn the heater off when tooHot is True. Turn the heater on when tooCold is
True.

5. Save the model.

6. System test DyeingSystemHT using the “30-Second Test.” Be sure to monitor both
the level and temperature to ensure the temperature is being properly maintained
(it should toggle around 30º C).

Lab 7: Deliverable and Test Harness / Low and High Temperature

37

X X X Lab 7: Deliverable and Test Harness / Low
and High Temperature

This lab accompanies Module 12, “System Hierarchies: Packaging and Layering.”

In this lab you learn to manage model complexity by using packages. You will orga-
nize the Dyeing System application into two categories, Deliverable and Test Harness,
and Low Temperature and High Temperature.

Objectives

When you have successfully completed this lab, you will be able to:

X Create packages and place existing model elements within them
X Create a containing capsule
X Add simple structure to that capsule by adding capsule roles
X Compile, run, and debug the model

Instructions

Create packages named Deliverable, TestHarness, and Common. With the exception of
DyeingSystem and DyeingSystemHT, place all the model elements in the appropriate
packages. Within each of the packages (except Common), create a high-temperature
package and place the high-temperature model elements with them.

Mastering Rational Rose RealTime — C++

38

