
Part 1: Warm-Up Exercises

1

 Part 1: Warm-Up Exercises

This collection of warm-up exercises is designed to complement the modules in the
Mastering Rational Rose RealTime student manual. Each of these brief exercises focuses
on a specific modeling skill or technique that lets you directly apply what you learn
during the course lectures.

Before you begin each exercise, your instructor will demonstrate and explain each
step in the instructions. When it’s your turn to create the model, you may find that
you are able to put the instructions aside and rely completely on what you learned
from the lecture and demonstration. You are encouraged to do so. You will learn
much more by relying on what you have learned from the instructor than by simply
following these instructions mechanically.

Complete instructions for the exercises are included here in case you get stuck during
class or wish to refer back to these exercises after the course is over.

Overview of Exercises

Here is an outline of all the warm-up exercises in this collection:

Warm-Up 1: Hello, World

Create a capsule with behavior, but no structure.

Warm-Up 2: Passive Classes

Create a passive class with simple behavior defined in an operation.

Warm-Up 3: Traffic Light

Create a capsule with one port, whose state machine contains three states.

Warm-Up 4: Electronic Lock

Create a model with a passive class whose behavior is defined by a state diagram.

Warm-Up 5: Battleship

Create a model with simple structure and behavior, which uses timers and the log
service.

Warm-Up 6: Traffic System

Create a model with moderate behavior and structure.

Mastering Rational Rose RealTime — C++

2

Warm-Up 7: Client/Server

Create two client/server models with dynamic structure and behavior.

Warm-Up 8: RQA-RT

Create a specification sequence diagram for the Client/Server model and run the
Verify Behavior against it.

Part 1: Warm-Up Exercises

3

Table of Figures

Figure 1.1 - Create New Model Dialog ..5
Figure 1.2 - Create New Capsule From Browser6
Figure 1.3 - State Diagram Toolbar and Window7
Figure 1.4 - Transition Specification ..7
Figure 1.5 - Setting the Top Capsule ..8
Figure 2.1 - Creating a New Operation In the Browser12
Figure 2.2 - Code for Greetings main Operation13
Figure 2.3 - Adding a Library to a Class ..14
Figure 2.4 - Component Specification - General Tab15
Figure 2.5 - Component Specification C++ Compilation Tab16
Figure 2.6 - Shutdown Model Execution ..17
Figure 2.7 - Changing the Greetings Code ...18
Figure 2.8 - Running nmake From the Command Prompt18
Figure 2.9 - Synchronizing the Code ..19
Figure 3.1 - Component Specification Dialog ..21
Figure 3.2 - Inserting Signals In a Protocol ..22
Figure 3.3 - Selecting a Protocol To a Port ..23
Figure 3.4 - Conjugating a Port ..24
Figure 4.1 - Adding the Standard C++ Libraries28
Figure 4.2 - main Operation Specification Detail Tab29
Figure 4.3 - State Diagram and Tool Bar ...30
Figure 4.4 - Transitions and States ...32
Figure 4.5 - Transitions Specification & Event Editor33
Figure 4.6 - Lock State Diagram Showing Transitions35
Figure 4.7 - Finished Model ...36
Figure 5.1 - Battleship Sequence Diagram ...40
Figure 6.1 - Traffic System Sequence Diagram42
Figure 8.1 - Client/Server Collaboration Diagram46
Figure 8.2 - Client/Server Sequence Diagram - One Client47
Figure 8.3 - Client/Server Sequence Diagram with Data49
Figure 8.4 - RQA-RT Verify Behavior Dialog ...50
Figure 8.5 - Client/Server Sequence Diagram with Local Actions52

Mastering Rational Rose RealTime — C++

4

Warm-Up 1: Hello, World

5

 Warm-Up 1: Hello, World

This exercise accompanies Module 2, “Rose RealTime Models.”

You will create a model containing one capsule, whose behavior is to print “Hello,
World!” on the screen.

Objectives

After successfully completing this exercise, you will be able to:

Create a new model.
Create a capsule in the model.
Add simple behavior to the capsule.
Compile, run, and debug the model.

Instructions

1. Start the Rose RealTime toolset.

2. Create a new C++model.

2.1. Select File > New.

2.2. Double-click RTC++
framework.

3. Save the model.

3.1. Select File > Save Model As.
3.2. Browse to

C:\MRRT\StudentWork.
3.3. Name the model HelloWorld.

3.4. Press (Enter) or click

3.5. You will be asked if you want
to create a workspace. When a
workspace is created, three
files are created to save

configuration and user options. Click

Figure 1.1 - Create New Model Dialog

Mastering Rational Rose RealTime — C++

6

4. Create a capsule:

4.1. Right-click the Logical View package.
4.2. Select New > Capsule.

4.3. Name the capsule.

4.3.1. Type HelloWorld . Do not use blank spaces in the name of any
Rose RealTime element.

4.4. Open the capsule’s State Diagram editor window.
4.4.1. Right-click the capsule.
4.4.2. Select Open State Diagram.

4.5. Add a state to the capsule’s state diagram.

4.5.1. Click the State Tool on the toolbar to select it.
4.5.2. Click inside the State Diagram.

4.5.3. To name the state, type Active .

Figure 1.2 - Create New Capsule From Browser

Warm-Up 1: Hello, World

7

4.6. Add an initial transition to the state.
4.6.1. Click the State Transition tool.
4.6.2. Click the initial state dot and drag to Active.

4.7. Place code in the transition:
4.7.1. Double-click the initial transition line to open the specification

dialog box.
4.7.2. Select the Actions tab.
4.7.3. Type the following code:

cout << “Hello, World” << endl;

4.7.4. Click .

Figure 1.3 - State Diagram Toolbar and Window

Figure 1.4 - Transition Specification

Mastering Rational Rose RealTime — C++

8

5. Include a library.

5.1. Double-click the capsule in the Logical View to open the capsule’s
Specification dialog box.

5.2. Click the C++ tab.
5.3. In the HeaderPreface area type the statement:

 #include <iostream.h>

5.4. Click
6. Create a new component.

6.1. Right-click the Component View folder.
6.2. Select New > Component.

6.3. Name the new component HelloWorld.

6.4. Set the component to active. To do this, right-click the component and
select Set As Active. (Notice that this makes the name of the component
in the browser bold.)

6.5. Drag the HelloWorld capsule (from the Logical View) onto the component.
6.6. Double-click the component to open the Component Specification dialog

box.

Figure 1.5 - Setting the Top Capsule

Warm-Up 1: Hello, World

9

6.7. Set the TopCapsule to HelloWorld.
6.7.1. Go to the C++ Executable tab of the Component Specification

dialog.

6.7.2. Click .
6.7.3. Choose HelloWorld from the list.

6.7.4. Click .
6.8. Set the TargetConfiguration to NT40T.x86-VisualC++-6.0

6.8.1. Go to the C++ Compilation tab.

6.8.2. Click .
6.8.3. Select NT40T.x86-VisualC++6.0 from the list.

6.8.4. Click .

6.9. Click to save the settings.
7. Create a new processor.

7.1. Right-click the Deployment View folder.
7.2. Select New > Processor.
7.3. Name the processor Workstation.

8. Compile, run, and debug HelloWorld.

8.1. Drag the HelloWorld component (from the Component View) onto
Workstation (in the Deployment View). This creates a component instance.
Rename it HelloWorld.

8.2. Set the component instance to active by right-clicking the instance and
selecting Set As Active. (Notice that this makes the name of the
component instance in the browser bold.)

8.3. Save your model.

8.4. Click the Run button . A dialog box appears. Click to build
and execute the model.
8.4.1. Watch the Build Log in the lower-left of the Rose RealTime

window to see each step in the build as it is done.
8.4.2. When the build is successfully completed, a Command Prompt

window appears in front of the Rose RealTime window. Click the
Rose RealTime window to bring it back into context.

8.4.3. The Browser now shows the RTS view instead of the Model view.

To start the model, click the Start button. Return to the
Command Prompt Window to see the results.

8.4.4. End the run-time session by clicking the Shutdown button.

Mastering Rational Rose RealTime — C++

10

Warm-Up 2: Passive Classes

11

 Warm-Up 2: Passive Classes

This exercise accompanies Module 3, “Passive Classes”. It is made up of a single pas-
sive class with an operation that contains the code to print the greeting.

When the model is complete and running correctly, you will change the greeting that
is printed outside of the Rose RealTime toolset. You will then synchronize the new
code with the Rose RealTime model.

Objectives

After successfully completing this exercise, you will be able to:

Create a model using a passive class.
Add simple behavior to the class by adding an operation.
Compile, run, and debug the model.
Change the code produced by Rose RealTime with a text utility.
Resynch the model with the changed code.

Instructions

1. Create a new C++ model.

1.1. Select File > New.

1.2. Double-click RTC++ framework.
2. Save the model with the name PassiveClass.

2.1. Select File > Save Model As.
2.2. Browse to C:\MRRT\StudentWork.

2.3. Type: PassiveClass .

2.4. You will be asked if you want to create a workspace. Click .
This creates three files that contain configuration and user options.

3. Create a passive class:

3.1. Right-click the Logical View package.
3.2. Select New > Class.

3.3. Name the class Greetings.

3.3.1. Type: Greetings

3.4. Click

Mastering Rational Rose RealTime — C++

12

4. Create an operation and add code to provide behavior.

4.1. Right-click the class in the browser.
4.2. Select New > Operation from the context menu.

4.2.1. Name the operation main.

4.3. Double-click the operation to open the Operation Specification.
4.4. Choose the Detail tab.
4.5. Set the Return type to int.
4.6. Create a parameter named argc .

4.6.1. Right-click in the Parameters box and select Insert.

4.6.2. Type: argc .

4.6.3. Tab to the area to the right of the operation parameter name and
below the Type heading. Click the highlighted box to open the
drop-down list.

4.6.4. Select int from the list.
4.7. Create a parameter named argv. (See Figure 2.3.)

4.7.1. Right-click in the Parameters box and select Insert.

4.7.2. Type: argv[] :

4.7.3. Double-click the parameter name to display the Parameter
Specification.

4.7.4. In the Type box, type: const char* const* .

Figure 2.1 - Creating a New Operation In the Browser

Warm-Up 2: Passive Classes

13

4.8. Click in the Code box and type the following code:
printf(“ Greetings, ”);

printf(“ Earthling \n”);

getchar();

return 0;

4.9. Select the C++ tab
4.10. Set OperationKind to global.

4.11. Click .

Figure 2.2 - Code for Greetings main Operation

Mastering Rational Rose RealTime — C++

14

5. Include the I/O library.

5.1. Double-click the class in the Logical View to open the class’ Specification.
5.2. Click the C++ tab.
5.3. Place the following statement in the ImplementationPreface area.

#include <stdio.h>

Note: You may have to scroll down to find this area of the specification dialog.

5.4. Click .
6. Create a new component.

6.1. Right-click the Component View folder.
6.2. Select New > Component.

6.3. Name the new component Greetings.

6.4. Create a reference for Greetings class by dragging the class from the
browser Logical View onto the Greetings component in the Component
View. (Note, there is no visual cue that the reference has been made. If you
open the Component Specification dialog box, the class will be listed on
the References tab.)

6.5. Set the component to active. To do this, right-click the component and
select Set As Active.

Figure 2.3 - Adding a Library to a Class

Warm-Up 2: Passive Classes

15

6.6. Double-click the component to open the Component Specification dialog
box.

6.7. Select the General tab.
6.8. Set the following parameters:

6.8.1. Set Environment to C++ .
6.9. Set the TargetConfiguration parameter for the component.

6.9.1. On the C++ Compilation tab, click
6.9.2. Select NT40T.x86-VisualC++-6.0 from the list.

6.9.3. Click to accept the target configuration.

6.9.4. Click to save the settings.

Figure 2.4 - Component Specification - General Tab

Mastering Rational Rose RealTime — C++

16

.

7. Create a new processor.

7.1. Right-click the Deployment View folder.
7.2. Select New > Processor.
7.3. Name the processor Workstation.

8. Save your model.

9. Create a component instance.

9.1. Drag the Greetings component from the Component View onto
Workstation in the Deployment View). This creates a component instance.
Rename it Greetings.

9.2. Double-click the component instance to display the Component Instance
Specification dialog. On the Detail tab, clear the box labeled Attach to
target on startup.

9.2.1. Click

Figure 2.5 - Component Specification C++ Compilation Tab

Warm-Up 2: Passive Classes

17

10. Compile, run, and debug the model.

10.1. Set the component instance to active by right-clicking the instance and
selecting Set As Active.

10.2. Click the Run button . A dialog box appears. Click to build
and execute the model.
10.2.1. A Command Prompt window will appear to show the results.
10.2.2. To end execution, close the Command Prompt window, right-click

on the component instance, and select Shutdown. (Ignore the error.

Click to close the error dialog.) The reason for this step is
that the executable has already quit, but the scripts in Rose
RealTime have not.

Figure 2.6 - Shutdown Model Execution

Mastering Rational Rose RealTime — C++

18

10.3. Use the editor of your choice to open the corresponding source file and
edit the printed message to your favorite greeting. (The file you want
should be C:\MRRT\Greetings\src\Greetings.cpp.) Save the changes.

10.4. Open a Command Prompt window and navigate to the directory at the
top of the model, (C:\MRRT\Greetings), and type nmake.

Figure 2.7 - Changing the Greetings Code

Figure 2.8 - Running nmake From the Command Prompt

Warm-Up 2: Passive Classes

19

10.5. Go to the bld directory and run the model. The greeting you see when you
run will show you the changes you made. Shutdown the execution of the
model.

10.6. Encorporate the changed code into your model:
10.6.1. Right-click the Greetings component in the Component View.
10.6.2. Select Build > CodeSync.

10.6.3. Click .
10.6.4. Build the component again.

10.7. Return to the Command Prompt window and run the model to verify
that the changes were correctly synchronized.

Figure 2.9 - Synchronizing the Code

Mastering Rational Rose RealTime — C++

20

Warm-Up 3: Traffic Light

21

 Warm-Up 3: Traffic Light

This exercise accompanies Module 5, “State Modeling”.

In this exercise, you will create a simple traffic light application composed of a cap-
sule with one port, whose state machine contains three states. The requirements for
this model are specified in a sequence diagram.

Objectives

After successfully completing this exercise, you will be able to:

Build a model from requirements given in the form of a sequence diagram.
Create a simple protocol class.
Define behavior (finite state machine), composed of multiple states and transi-
tions.
Compile, run, debug, and verify the multi-state model, using sequence diagrams
generated during run time.

Instructions

1. Use the following sequence diagram as a set of requirements.

2. Create a model named TrafficLight. Save it in StudentWork.

Figure 3.1 - Component Specification Dialog

Mastering Rational Rose RealTime — C++

22

3. Create a protocol class named LightControl. To do this:

3.1. Right-click the Logical View package.
3.2. Select New > Protocol.

3.3. Name the protocol by typing in the name followed by .

3.4. Add signals named red, yellow, and green. They must all be In Signals or
Out Signals. If you mix the directions, the model won’t work. The
direction of the signals and the conjugation of the ports are
interdependent. Because we will use this model later, all signals for this
model must be Out Signals.
3.4.1. Open the protocol specification dialog box by double-clicking the

protocol in the Model Browser.

3.4.2. Click the Signals tab.
3.4.3. Right-click in the Out Signals area and select Insert.

3.4.4. Type the name of the signal .

3.5. Click to save your settings.

Figure 3.2 - Inserting Signals In a Protocol

Warm-Up 3: Traffic Light

23

4. Create a capsule class named TrafficLight.

5. Define the structure of TrafficLight:

5.1. Open the structure diagram for TrafficLight by expanding its tree and
double-clicking on Structure Diagram.

5.2. Add an end port, based on LightControl, named control.

5.2.1. Select the Port Tool . Click the boundary line of the capsule
structure. Select LightControl from the list by double-clicking it.

5.2.2. Type the name of the port followed by .

5.3. Determine the proper conjugation for the port, and set it. To help you
decide if you want a base or conjugatred port, think about the fact that
this traffic light will be one of four in a typical four-way intersection. If
you select the wrong conjugation, you will not see the correct signals
when you associate a trigger with each of the transitions you create in
step 5.4.
5.3.1. Open the Port Specification dialog box by double-clicking the port

on the diagram.
5.3.2. Make sure that the End Port box is selected. Select or clear the

Conjugated box based on what type is needed.

5.3.3. Click .

Figure 3.3 - Selecting a Protocol To a Port

Mastering Rational Rose RealTime — C++

24

6. Define the behavior of TrafficLight:

6.1. Add three states named Red, Yellow, and Green.
6.1.1. Open the capsule’s state diagram by double-clicking on State

Diagram in the capsule’s tree.

6.1.2. Using the State Tool , create three states and name them as
directed above. You can arrange them to emulate a traffic signal.

6.2. Make Red the initial state.

6.2.1. Using the Transition Tool , create a transition to Red from the
initial point by clicking on the initial point and dragging to Red.

6.3. Add three transitions.
6.3.1. Create transition goGreen from Red to Green.

6.3.2. Create transition goYellow from Green to Yellow.
6.3.3. Create transition goRed from Yellow to Red.

6.4. Add triggers for each transition.
6.4.1. Double-click on the transition on the diagram to display the

Transition Specification dialog box.

Figure 3.4 - Conjugating a Port

Warm-Up 3: Traffic Light

25

6.4.2. Select the Triggers tab.
6.4.3. Right-click in the Triggers area and select Insert.
6.4.4. Select control from the Port list. This launches the Event Editor.
6.4.5. In the Signal list, check the box for the correct signal color.

6.4.6. Click . to close the Event Editor dialog.
6.4.7. Repeat for each of the remaining two change-light-color

transitions.

6.4.8. Click . to save the triggers you created and close the
Transition Specification dialog.

7. Build and run TrafficLight in the same way you did HelloWorld.

8. Test and debug TrafficLight.

8.1. Switch context from the Command Prompt window to the RunTime
System (RTS).

8.2. Add a probe to the control port.
8.2.1. Right-click TrafficLight and select Open Structure Monitor.

8.2.2. Select the Probe Tool . Click the port in the structure monitor.
8.3. Create three signals: red, yellow, and green.

8.3.1. Expand the Probes folder and double-click the probe to open its
specification dialog box.

8.3.2. Click the Detail tab, right-click the entry field, and select Insert.
8.3.3. Use the Edit Inject Message specification to name the signal. Set

Priority to General and Direction to In.

8.3.4. Click . to save the signal.
8.3.5. Repeat for the remaining signals.

8.3.6. Click . to close the Probe Specification.
8.4. Inject red, yellow, and green signals to cycle the behavior.

8.4.1. Click Start to run the model.
8.4.2. Right-click TrafficLight and select Open State Monitor.
8.4.3. Double-click control/green in the probe folder. This injects the green

signal and causes the model to transition to the Green state.
8.4.4. Double-click control/yellow in the probe folder. This injects the

yellow signal and causes the model to transition to the Yellow state.
8.4.5. Double-click control/red in the probe folder. This injects the red

signal and causes the model to transition to the Red state.

9. Click the Shutdown button to halt the execution of the model.

10. Save the model.

Mastering Rational Rose RealTime — C++

26

Warm-Up 4: Electronic Lock

27

 Warm-Up 4: Electronic Lock

This exercise accompanies Module 5, “State Modeling”. It models the behavior of an
electronic lock The model starts with the lock in the locked state. To unlock the lock,
you must enter 1 and then 2. The lock is locked by entering the letter L. For help,
enter a question mark.

The model is composed of a passive class with a state machine that provides the
behavior. The state machine has three states: Locked, Unlocking, and Unlocked. The
Unlocking states waits for the second character of the combination, changing to the
Locked or Unlocked state depending on the character received.

Objectives

After successfully completing this exercise, you will be able to:

Add a state machine to a passive class.
Create a trigger operation for a passive class state machine.
Add code to a transition.

Instructions

1. Start a new model named Lock.

2. Save the model

3. Create a passive class named ElectronicLock:

3.1. Right-click the Logical View package.
3.2. Select New > Class.

3.3. Name the class.

3.3.1. Type: ElectronicLock .

Mastering Rational Rose RealTime — C++

28

4. Include the I/O libraries.

4.1. Double-click on the class icon to open the Class Specification dialog.
4.2. Go to the C++ tab of the Class Specification.
4.3. Place the following statements in the ImplementationPreface area.

#include <stdio.h>

#include <stdlib.h>

#include <conio.h>

4.4. Click .

5. Create a main operation.

5.1. Right-click the class in the browser.
5.2. Select New > Operation from the context menu.
5.3. Name the operation main.
5.4. Double-click the operation to open the Operation Specification dialog

box.
5.5. Select the C++ tab.
5.6. Set OperationKind to global.
5.7. Choose the Detail tab.
5.8. Set the Return type to int.

Figure 4.1 - Adding the Standard C++ Libraries

Warm-Up 4: Electronic Lock

29

5.9. Create a parameter named argc.
5.9.1. Right-click in the Parameters box.
5.9.2. Select Insert.

5.9.3. Type: argc .
5.9.4. Click the area to the right of the parameter name and below the

Type heading. Move your cursor slightly and click again.
5.9.5. Select int from the list.

5.10. Create a parameter named argv.
5.10.1. Right-click in the Parameters box.
5.10.2. Select Insert.

5.10.3. Type: argv [] :
5.10.4. Double-click the parameter name to display the Parameter

Specification dialog box and return to the Operation specification
dialog.

5.10.5. In the Type box, type: char* .

Figure 4.2 - main Operation Specification Detail Tab

Mastering Rational Rose RealTime — C++

30

5.11. Click in the Code box and type the following code:
ElectronicLock theLock;

char c;

do {

theLock.Number(c);

c = _getch();

} while (c != 'q');

return 1;

5.12. Click .
6. Create an operation to act as a trigger.

6.1. Right-click the class in the browser.
6.2. Select New > Operation from the context menu.
6.3. Name the operation Number.
6.4. Double-click the operation to open the Operation Specification dialog

box.
6.5. Choose the General tab.
6.6. Type: trigger in the Stereotype box.
6.7. Select the C++ tab.
6.8. Set OperationKind to global.
6.9. Select the Detail tab.
6.10. Set the Return type to void.
6.11. Create a parameter.

6.11.1. Name the parameter num.

Transition Tool
State Tool

Class Name

Self-transition Tool

Figure 4.3 - State Diagram and Tool Bar

Warm-Up 4: Electronic Lock

31

6.11.2. Set the parameter type as char.

6.12. Click .
7. Create the state machine.

7.1. Right-click the ElectronicLock class in the browser.
7.2. Select Open New State Diagram.
7.3. Place a state on the diagram.

7.3.1. Click the State Tool on the toolbar to select it.
7.3.2. Click inside the state diagram.

7.3.3. To name the state, type: Locked .

7.4. Create an initial transition.

7.4.1. Click the State Transition tool .
7.4.2. Click-and-drag from the initial state dot to Locked.

7.5. Place code in the transition:
7.5.1. Double-click the initial transition line to open the specification

dialog box.
7.5.2. Select the Actions tab.
7.5.3. Type the following code:

printf("*****************************\n");

printf(" ACME Electronic Lock System \n");

printf("*****************************\n\n");

7.5.4. Click .
7.6. Create a self-transition on the Locked state.

7.6.1. Click the Self-transition tool .
7.6.2. Click inside the Locked state.
7.6.3. Name the transition question.

7.7. Define the question self-transition on the Locked state. This transition is
taken if a question mark is entered. Normally, instructions on what to do
would be placed here. For now, just print a message of
acknowledgement.
7.7.1. Double-click the question transition on the Locked state to open the

Transition Specification dialog.
7.7.2. Go to the Triggers tab.
7.7.3. Right-click and select Insert.
7.7.4. Select Number from the drop-down box.
7.7.5. In the Guard window, type: num == '?'

Mastering Rational Rose RealTime — C++

32

7.7.6. Click .
7.7.7. Go to the Actions tab on the Transition Specification dialog and

enter the following in the Code window:
printf ("Locked Help Goes Here\n");

7.7.8. Click .
7.8. Add additional states and transitions to match the following diagram.

7.9. Define the lockIsClosed transition. This transition is used to relock the lock
once it has been unlocked. It fires only when the lock is unlocked and the
character L is typed.
7.9.1. Double-click the lockIsClosed transition to open the Transition

Specification dialog. Move the dialog box far enough to one side
that you can see the state diagram.

7.9.2. Go to the Triggers tab.
7.9.3. Right-click and select Insert.
7.9.4. The Event Editor dialog will appear. In the Guard code area, type:

num == 'L'

Note: Be careful to get the quote marks around the L as shown in Figure 4.5.

7.9.5. Select Number from the drop-down box.

7.9.6. Click .
Notice that the transition line is now solid. The capacitance marks disap-
pear when you define the trigger.

Figure 4.4 - Transitions and States

Warm-Up 4: Electronic Lock

33

7.9.7. Go to the Actions tab of the Transition specification dialog and
enter the following in the Code window:
printf("The lock is LOCKED\n");

7.9.8. Click .
 Notice that the transition arrowhead is now filled.

7.10. Define the Number1 transition. This transition fires when the lock is in the
locked state and the character 1 is entered as the first character in the
unlock sequence. When the transition is taken, the state machine goes
into the Unlocking state where it waits for another character in the
sequence.
7.10.1. Double-click the Number1 transition to open the Transition

Specification dialog.
7.10.2. Go to the Triggers tab.
7.10.3. Right-click and select Insert.
7.10.4. Select Number from the drop-down box.
7.10.5. In the Guard window, type: num == '1'

Note: Be careful to get the quote marks around the one.

Figure 4.5 - Transitions Specification & Event Editor

Mastering Rational Rose RealTime — C++

34

7.10.6. Click to exit the Event Editor.

7.10.7. Click to exit the Transition Specification dialog.
7.11. Define the question self-transition on the Unlocked state. This transition is

taken if a question mark is entered. Normally, instructions on what to do
would be placed here. For now, just print a message of
acknowledgement.
7.11.1. Double-click the questions transition on the Unlocked state to open

the Transition Specification dialog.
7.11.2. Go to the Triggers tab.
7.11.3. Right-click and select Insert.
7.11.4. Select Number from the drop-down box.
7.11.5. In the Guard window, type: num == '?'

7.11.6. Click .
7.11.7. Go to the Actions tab of the Transition specification dialog and

enter the following in the Code window:
printf ("Unlocked Help Goes Here\n");

7.11.8. Click .
Once the state machine is in the Unlocking state, it needs to respond according to the
input received. To do this, you will add a choice point to filter out the question mark
and another to determine if the input is a two or not.

7.12. Create a choice point to determine if the input is a question mark.

7.12.1. Select the choice point tool and create a choice point named
IsQuestion.

7.12.2. Double-click the choice point to open the Choice Point
Specification dialog.

7.12.3. Go to the Condition tab.
7.12.4. Enter the following condition:

num == ‘?’

7.12.5. Click .
Notice that there is now a “C” in the choice point. This indicates
that there is a condition defined for the decision.

7.13. Create a choice point to determine if the input is a two or not.
7.13.1. Select the choice point tool and create a choice point named IsTwo.
7.13.2. Open the Choice Point Specification dialog.
7.13.3. Go to the Condition tab.
7.13.4. Enter the following condition:

num == ‘2’

Warm-Up 4: Electronic Lock

35

7.13.5. Click .

7.14. Create the transitions shown in Figure 4.6.
7.15. Define the InputRcvd transition.

7.15.1. Double-click the InputRcvd transition to open the Transition
Specification dialog.

7.15.2. Go to the Triggers tab.
7.15.3. Right-click and select Insert.
7.15.4. Select Number from the drop-down box.

7.15.5. Click to exit the Event Editor.

7.15.6. Click to exit the Transition Specification dialog.
7.16. Add code to the True transition leaving IsQuestion to handle the case

where a question mark is input. The transition returns to the Unlocking
state to wait for additional input.
7.16.1. Double-click the True transition to open the Transition

Specification dialog.
7.16.2. Go to the Actions tab and enter the following in the Code

window:
printf ("Unlocking Help Goes Here\n");

7.16.3. Click .

Figure 4.6 - Lock State Diagram Showing Transitions

Mastering Rational Rose RealTime — C++

36

7.17. Add code to the True transition leaving IsTwo to handle the case where a
two is entered to unlock the lock.
7.17.1. Double-click the True transition to open the Transition

Specification dialog.
7.17.2. Go to the Actions tab and enter the following in the Code

window:
printf ("The lock is UNLOCKED\n");

7.17.3. Click .
7.18. Add code to the False transition leaving IsTwo to handle any entry other

than two. If the second digit isn’t a two, the lock resets to the Locked state.
7.18.1. Double-click the False transition to open the Transition

Specification dialog.
7.18.2. Go to the Actions tab and enter the following in the Code

window:
printf("Sorry, that is not the right
combination\n");

7.18.3. Click .
7.19. Save the model. At this point it should look something like this:

8. Create a new component.

8.1. Right-click the Component View folder.
8.2. Select New > Component.

8.3. Name the new component LockSystem.

8.4. Drag the ElectronicLock class (from the Logical View) onto the component.
8.5. Set the component to active.

Figure 4.7 - Finished Model

Warm-Up 4: Electronic Lock

37

8.6. Double-click the LockSystem component to open the Component
Specification.

8.7. Select the General tab.
8.8. Set Environment to C++ .

8.9. Click to save the settings.

8.10. Click on the Build Component tool .
8.11. If the build is successful, continue. Otherwise, go back and check your

work.
9. Create a new processor.

9.1. Right-click the Deployment View folder.
9.2. Select New > Processor.
9.3. Name the processor Workstation.

10. Compile, run, and debug Lock.

10.1. Drag the LockSystem component onto Workstation.
10.2. Double-click the component instance in the Deployment View to display

the Component Instance Specification dialog.
10.3. On the Detail tab, clear the box labeled Attach to target on startup.

10.4. Click .

10.5. Set the component instance to active by right-clicking the instance and
selecting Set As Active.

10.6. Click the Run button . A dialog box appears. Click to build
and execute the model.
10.6.1. A Command Prompt window will appear to show the results. Test

the combination, relock the lock, and test the two question
transitions.

10.6.2. To end execution, close the Command Prompt window, right-click
the component instance, and select Shutdown. (Ignore the error.

Click to close the error dialog.)

Mastering Rational Rose RealTime — C++

38

Warm-Up 5: Battleship

39

 Warm-Up 5: Battleship

This exercise accompanies Module 6, “System Services.”

In this exercise, you will create a simple simulation model composed of a battleship
that sends sonar signals (pings) into the ocean at regular time intervals, and detects
and displays returned signals (echoes). The model will have simple structure and
behavior and use Timer and Log services.

Objectives

After successfully completing this exercise, you will be able to:

Create a new model from existing model elements.
Trigger capsule behavior with a timer, using the Timing Service in the services
library.
Display text messages from a capsule, using the Log Service in the services
library.
Compile, run, debug, and verify the model using sequence diagrams generated
during run time.

Instructions

1. Open the warm-up exercise model named Battleship. This model should be
located at C:\MRRT\WarmUp\. If this is not the case, consult your instructor.

2. Save the model in your StudentWork directory.

2.1. Click at the prompt to create a new workspace.
3. Create a capsule class named World, which is the top-level capsule for this appli-

cation.

4. Place a capsule role, based on the existing capsule class Ocean, within World.
Name it ocean.

5. Using the sequence diagram shown on the next page as requirements, design a
capsule named Battleship that implements the functionality of the object, battle-
ship, in the diagram.

Mastering Rational Rose RealTime — C++

40

6. Place a capsule role, based on Battleship, in World. Connect it to ocean.

7. Because a system service is required, you must show the dependencies.

7.1. Open the Main class diagram in the Logical View.
7.2. Drag Battleship, Ocean, and RTTimespec onto the diagram. (RTTimespec is

in RTClasses.)
7.3. Using the Dependency tool, draw a dependency from Battleship to

RTTimespec and from Ocean to RTTimespec.
8. Compile, run, and debug World.

9. Verify that the model you have constructed is complete, using a sequence dia-
gram generated during run time.

9.1. Select ocean in the Structure Monitor, then control-click battleship so they
are both selected.

9.2. Right-click on an empty part of the diagram and select Open Trace.
9.3. Start the model and let it run until battleship receives echo messages and

then goes back to getting no return message.
9.4. Create the sequence diagram from the trace.

9.4.1. Right-click in the trace window and select Open Sequence
Diagram.

9.4.2. Choose whether to save the diagram or not, then click OK.

10. Shutdown the model.

Figure 5.1 - Battleship Sequence Diagram

 / ocean : Ocean
 / battleship
 : Battleship

1: : initialize1: : initialize
2: : init ialize2: : init ialize

active
3: : ping3: : ping

4: : ping4: : ping

5: : ping5: : ping

6: : ping6: : ping

7: : ping7: : ping

8: : ping8: : ping

9: : echo9: : echo

10: : ping10: : ping

11: : echo11: : echo

12: : ping12: : ping

13: : ping13: : ping

14: : ping14: : ping

a.) Pings are sent at 1
 second intervals.
b.) Print "Ping..." when
 a ping is sent.

Print "Echo" when an
echo is received.

Warm-Up 6: Traffic System

41

 Warm-Up 6: Traffic System

This exercise accompanies Module 7, “Requirements Analysis.”

In this exercise, you will create a simple traffic intersection application based on two,
2-lane roads that intersect. The intersecting roads run north/south and east/west. The
model you create will have moderately complex behavior and structure.

Objectives

After successfully completing this exercise, you will be able to:

Create a new model using an existing model and its elements (capsule and proto-
col classes).
Create a new capsule class and define its structure and behavior.
Create a containing capsule.
Add structure to that capsule by adding capsule roles.
Compile, run, and debug the new model.

Instructions

1. Open the TrafficLight model from Lab 3 that you saved to C:\MRRT\Student-
Work. Use it as your starting point by saving it under the name TrafficSystem.

2. Use the sequence diagram on the next page as requirements for this model.

3. Create a capsule class named Controller.

3.1. Define its structure. (Don’t overlook the fact that you need a timer.)
3.2. Define its behavior.

4. Create a container capsule class named Intersection.

4.1. Add a capsule role, based on Controller, named controller. This controls
the color of the lights facing each of four directions.

4.2. Add four capsule roles, based on TrafficLight, named north, south, east, and
west. These are the four sides of your typical traffic light.

4.3. Connect each of the four TrafficLight capsule roles to the appropriate side
of the controller capsule role (one at each compass point) using the
Connector tool. To keep the concept straight, north should be opposite
south, east should be opposite west. Each pair (north/south and east/west)
must always display the same color light.

5. Compile, run, and debug Intersection.

Mastering Rational Rose RealTime — C++

42

 / controller
 : Controller

 / north
 : TrafficLight

 / west
 : TrafficLight

red red
1: green 1: green

2: red 2: red
green nsGreen

3: : yellow 3: : yellow
yellow nsYellow

4: red 4: red
5: green 5: green

green red ewGreen
6: : yellow 6: : yellow

yellow ewYellow
7: : green 7: : green

8: : red 8: : red

nsGreen green red

green time =
4 seconds

yellow time =
2 seconds

Figure 6.1 - Traffic System Sequence Diagram

Warm-Up 7: Client/Server

43

 Warm-Up 7: Client/Server

This exercise accompanies Module 15, “Adaptive Modeling.”

In this exercise, you will create two simple client/server applications. In the first, the
client will be incarnated by its container capsule, and in the other, the client will be
imported by its container capsule. The models you create will have dynamic structure
and behavior.

Objectives

After successfully completing this exercise, you will be able to:

Create a model with capsules that are incarnated (dynamically created at run
time).
Create a model with capsules that are imported (dynamically “moved” at run
time).
Compile, run, and debug models that use incarnation and multiple containment.

Instructions

1. Open the ClientServer model in C:\MRRT\WarmUp.

2. Save the model as ClientServerIncarnated.

3. Open the structure diagram for the TheSystem.

4. Open the Capsule Role specification dialog box for client and change the setting
from Fixed to Optional.

5. Add a protected, unwired port named frame, based on the Frame service.

5.1. Select the Port tool and click inside the boundary of the TheSystem
structure diagram. This creates a protected port.

5.2. Select Frame from the list of protocols.
5.3. Type the name of the new port.

6. Add an initial transition to TheSystem’s behavior (which is to say, from the initial
state to the capsule boundary) containing the following code:

frame.incarnate(client);
7. Build the model and remove any errors.

8. Run the model, watch client incarnate, and then use Trace to watch the client and
server begin messaging.

Mastering Rational Rose RealTime — C++

44

9. Save the model as ClientServerImported.

10. Set client to Plug-in in its Specification dialog box.

11. Add a new client to TheSystem, named realClient.

12. Change the code in the initial transition of TheSystem’s behavior to :

frame.import(realClient, client);

13. Build the model and remove any errors.

14. Run the model, watch client receive the imported realClient, and then use Trace
to watch the client and server begin messaging.

Warm-Up 8: RQA-RT

45

 Warm-Up 8: RQA-RT

This exercise accompanies Module 16, “Rational Quality Architect - RealTime.”

In this exercise, you will create a simple test harness for a client/server system. You
will then use the test harness to perform unit testing.

Objectives

After successfully completing this exercise, you will be able to:

Create a specification sequence diagram for an existing model.
Create a test harness from the specification sequence diagram.

Instructions

1. Load TestClientServer in C:\MRRT\WarmUp\ as your starting point and save it
in your folder.

2. Create a package named TestResults in the Logical View.

3. Create a collaboration diagram and name it SingleClient.

3.1. Right-click the Logical View folder and select New > Collaboration
Diagram.

3.2. Name the diagram SingleClient.
3.3. Double-click SingleClient to open the diagram.

4. Drag the Client and Server capsules onto the collaboration diagram and create

the binding between them with the Association Tool .

5. Create a specification sequence diagram for the model from the collaboration
diagram. Name the diagram HappyPath. Creating a collaboration diagram
keeps the test artifacts isolated from the rest of the model.

5.1. Select the two capsules in the collaboration diagram. (It’s ok to select the
association, too.)

5.2. Right-click the empty part of the collaboration diagram and select Create
Sequence Diagram. (Note: If you click the selected capsules, you will not
get the right menu. See next page for example.)

5.3. The new diagram is named NewDiagram. To rename it, right-click
NewDiagram in the Logical View folder and select Rename.

Mastering Rational Rose RealTime — C++

46

6. Draw an asynchronous message named requestService from Client to Server.

6.1. Using the Asynchronous Send Message Tool , click Client’s lifeline
and drag to Server’s lifeline.

6.2. Open the Send Message dialog to the General tab and type in the name
of the message. (Double-click the message line.)

6.3. Go to the Port Detail tab. Set the “From port”, “To port” and “Signal”
specifiers to indicate a “requestService” message from the client to the
server.

7. Finish the sequence diagram as shown on the next page. The (6) on the service-
Handle and returnService messages denotes that there is data associated with
the message, in this case the integer 6. You need to specify the data for these two
messages on the Detail tab of the Send Message specification. For this part of
the exercise, it doesn’t matter what value you give the data.

8. Create a component called TestComponent with the correct Target Configuration.

9. Create a processor called TestProc using default settings.

10. Right-click the HappyPath sequence diagram, and select Verify Behavior from
the context menu. Since RQA-RT has never been run on this collaboration, a dia-

log box is displayed asking you if you want to use the wizard. Click .

Figure 8.1 - Client/Server Collaboration Diagram

Warm-Up 8: RQA-RT

47

11. On the first page of the wizard, name the test TestHappyPath. Select the Reuse
selected component check box and select TestComponent as the component
and TestProc as the processor.

12. On the second page of the wizard, select the clientR1 check box. The client will
be generated by RQA-RT, based on the behavior described in the sequence dia-
gram. This lets you test the server.

13. Leave the settings on the third page to the defaults. Click Next to continue.

14. Clear Store results with generated harness, and then find the TestResults pack-
age using the browser. Finish the wizard.

15. Click on the Verify Behavior setup dialog. RQA-RT now generates,
compiles, links and runs the model, while gathering information about the exe-
cution. This information automatically is compared to the specification
sequence diagram.

16. After the comparison, a message box is displayed telling you to look in the log.
If all is well, there should be no differences. When a difference is reported, there
are two parts to each difference. Double-click one side to see the difference on
the specification sequence diagram, and the other to see the difference on the
sequence diagram generated by RQA-RT.

17. Look in the TestResults package to see the trace sequence diagram and test
results summaries. The test harness that was created by the Verify Behavior pro-
cess is in the package named RQART_TestHappyPath. You can use this test
harness again for regression testing.

Figure 8.2 - Client/Server Sequence Diagram -
One Client

Mastering Rational Rose RealTime — C++

48

If there is time remaining, you may do the following exercise.

Drivers and Data

In this exercise, you will run two clients with one server. Assume that the server will
only hand out one service at a time.

Objectives

After successfully completing this exercise, you will be able to:

Create multiple drivers.
Test with data.

Instructions

1. Load TestClientServer2 from C:\MRRT\WarmUp\ as your starting point and
save it in your StudentWork directory.

2. Create a collaboration diagram in SpecificationPackage called MultipleClients.

3. In the collaboration diagram, create a capsule role based on Server and two cap-
sule roles based on Client.

4. Connect the clients to the server.

5. Create a sequence diagram from MultipleClients named MultipleRequest. Add
elements as shown in the sequence diagram on the next page. Don’t forget to
specify the ports in the Send Message dialog.

6. Create a package for your test results.

7. Create a processor.

8. Run the Verify Behavior process with the client roles set as drivers. This gener-
ates both client interactions as drivers. They each have their own behavior as
specified in the sequence diagram.

9. Save the Options settings generated by the Verify Behavior Wizard for later use.
The settings are relative to the collaboration used.

9.1. When the wizard is done, the Verify Behavior dialog box is displayed.
Save your settings using the Save button at the top of the dialog box. You

can see what your options are set to by clicking in the lower
left of the dialog box.

Warm-Up 8: RQA-RT

49

Figure 8.3 - Client/Server Sequence Diagram with Data

Mastering Rational Rose RealTime — C++

50

Next you will test data sent with the messages. You do this by changing the serviceRe-
quest signal to request a service of a specific type, identified by an integer. The server
is required to send back a serviceHandle with the same value as in the serviceRequest.

10. Save your model as TestClientServer2withData.

11. Create a new sequence diagram named RequestWithData by duplicating Multi-
pleRequest then renaming the duplicate.

12. Modify the requestService signal to accept an integer data type.

12.1. Open the RequestWithData sequence diagram.
12.2. Double-click the requestService message to open the Send Message

Specification dialog box and go to the Port Detail tab.
12.3. Click the Signal link (blue, underlined label) to open its Signal

Specification.
12.4. Change the Data class to int.

12.5. Click .
13. Add the requestService data.

13.1. Go to the Detail tab.
13.2. Enter the number 6 in the Data box.

13.3. Click .
14. Define a variable in the clientR1 interaction.

14.1. To open the Interaction Instance Specification dialog box, right-click the
ClientRole1 interaction in the sequence diagram and select Open
Specification.

Figure 8.4 - RQA-RT Verify Behavior Dialog

Warm-Up 8: RQA-RT

51

14.2. Go to the Quality Architect-RT tab.
14.3. In the Attributes window enter:

serviceNumber : int

This defines a variable that you can use as an attribute within this interaction.

14.4. Click .
15. Create a local action above the first message on the clientR1 interaction.

15.1. Using the Local Action tool , click the lifeline for clientR1 just above
the first message.

15.2. Double-click the local action to open the Local Action Specification dialog
box.

15.3. Go to the Quality Architect-RT tab. In the Code box, enter:
serviceNumber = 6;

15.4. This code is added to the test harness and executes before the first
message.

15.5. Click .
16. Open the Send Message Specification dialog box for the response message from

the server to clientR1. Open to the Quality Architect-RT tab. In the
Receiver Test Driver Code box enter the following:

if(*((int*)(msg -> getData())) != serviceNumber)

 SendACompareFailure (“Servicenumber mismatch”);

This states that the data on the message from the model to the driver needs to
have data that equals serviceNumber. If it doesn’t, a CompareFailure is logged by
RQA-RT.

16.1. Click .
17. Add data for the messages as shown in the sequence diagram on the next page

and modify clientR2 in the same manner as for clientR1.

18. Invoke Verify Behavior. Note that the tool checks if the answer from the server
is the one expected.

19. Change the code so that the test fails. (The easiest way is to change the value of
serviceNumber in the local action. Notice how the difference is reported in the
log.

Mastering Rational Rose RealTime — C++

52

Figure 8.5 - Client/Server Sequence Diagram with Local Actions

